skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Van_Norman, Jaimie M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Oriented cell divisions establish plant tissue and organ patterning and produce different cell types; this is particularly true of the highly organized Arabidopsis (Arabidopsis thaliana) root meristem. Mutant alleles of INFLORESCENCE AND ROOT APICES RECEPTOR KINASE (IRK) exhibit excess cell divisions in the root endodermis. IRK is a transmembrane receptor kinase that localizes to the outer polar domain of these cells, suggesting that directional signal perception is necessary to repress endodermal cell division. Here, a detailed examination revealed many of the excess endodermal divisions in irk have division planes that specifically skew toward the outer lateral side. Therefore, we termed them “outward askew” divisions. Expression of an IRK truncation lacking the kinase domain retains polar localization and prevents outward askew divisions in irk; however, the roots exhibit excess periclinal endodermal divisions. Using cell identity markers, we show that the daughters of outward askew divisions transition from endodermal to cortical identity similar to those of periclinal divisions. These results extend the requirement for IRK beyond repression of cell division activity to include cell division plane positioning. Based on its polarity, we propose that IRK at the outer lateral endodermal cell face participates in division plane positioning to ensure normal root ground tissue patterning. 
    more » « less
  2. In plants, sugars are the key source of energy and metabolic building blocks. The systemic transport of sugars is essential for plant growth and morphogenesis. Plants evolved intricate molecular networks to effectively distribute sugars. The dynamic distribution of these osmotically active compounds is a handy tool for regulating cell turgor pressure, an instructive force in developmental biology. In this study, we have investigated the molecular mechanism behind the dual role of the receptor-like kinase CANAR. We functionally characterized a long non-coding RNA, CARMA, as a negative regulator of CANAR. Sugar-responsive CARMA specifically fine-tunes CANAR expression in the phloem, the route of sugar transport. Our genetic, molecular, microscopy, and biophysical data suggest that the CARMA–CANAR module controls the shoot-to-root phloem transport of sugars, allows cells to flexibly adapt to the external osmolality by appropriate water uptake, and thus adjust the size of vascular cell types during organ growth and development. Our study identifies a nexus of plant vascular tissue formation with cell internal pressure monitoring, revealing a novel functional aspect of long non-coding RNAs in developmental biology. 
    more » « less
    Free, publicly-accessible full text available November 1, 2025
  3. Abstract Polarity of plasma membrane proteins is essential for cell morphogenesis and control of cell division and, thus, influences organ and whole plant development. In Arabidopsis (Arabidopsis thaliana) root endodermal cells, 2 transmembrane kinases, INFLORESCENCE AND ROOT APICES RECEPTOR KINASE (IRK) and KINASE ON THE INSIDE (KOIN), accumulate at opposite lateral domains. Their polarization is tightly linked to their activities regulating cell division and ground tissue patterning. The polarization of IRK and KOIN relies solely on the secretion of newly synthesized protein. However, the secretion machinery by which their opposite, lateral polarity is achieved remains largely unknown. Here, we show that different sets of ADP-ribosylation factor (ARF)-guanine-nucleotide exchange factors (ARF-GEFs) mediate their secretion. ARF-GEF GNOM-like-1 (GNL1) regulates KOIN secretion to the inner polar domain, thereby directing KOIN sorting early in the secretion pathway. For IRK, combined chemical and genetic analyses showed that the ARG-GEF GNL1, GNOM, and the BREFELDIN A-INHIBITED-GUANINE NUCLEOTIDE-EXCHANGE FACTORs 1 to 4 (BIG1-BIG4) collectively regulate its polar secretion. The ARF-GEF-dependent mechanisms guiding IRK or KOIN lateral polarity were active across different root cell types and functioned regardless of the protein's inner/outer polarity in those cells. Therefore, we propose that specific polar trafficking of IRK and KOIN occurs via distinct mechanisms that are not constrained by cell identity or polar axis and likely rely on individual protein recognition. 
    more » « less
  4. ABSTRACT Polarized cells are frequently partitioned into subdomains with unique features or functions. As plant cells are surrounded by walls, polarized cell shape and protein polarity in the plasma membrane are particularly important for normal physiology and development. We have identified WALLFLOWER (WFL), a transmembrane receptor kinase that is asymmetrically distributed at the inner face of epidermal cells and this localization is maintained independent of cell type. In epidermal hair (H) cells in the elongation and differentiation zones, WFL exhibits a dual polar localization, accumulating at the inner domain as well as at the root hair initiation domain (RHID). Furthermore, overexpression of WFL leads to a downward shift in root hair (RH) position suggesting WFL operates in a signaling pathway that functions across H cells to inform RH position. WFL asymmetric distribution and function is affected by deletion of the intracellular domains resulting in its mislocalization to the outer polar domain of H cells and exclusion from RHIDs and bulges. Thus, our results demonstrate that in epidermal H cells the WFL intracellular domains are required to direct its dual polar localization and influence RH position. ONE SENTENCE SUMMARYA receptor kinase with dual polar localization, to the inner polar domain and root hair initiation domain, in root epidermal cells, requires its intracellular domain for localization and function. 
    more » « less
  5. ABSTRACT The field of developmental biology has declined in prominence in recent decades, with off-shoots from the field becoming more fashionable and highly funded. This has created inequity in discovery and opportunity, partly due to the perception that the field is antiquated or not cutting edge. A ‘think tank’ of scientists from multiple developmental biology-related disciplines came together to define specific challenges in the field that may have inhibited innovation, and to provide tangible solutions to some of the issues facing developmental biology. The community suggestions include a call to the community to help ‘rebrand’ the field, alongside proposals for additional funding apparatuses, frameworks for interdisciplinary innovative collaborations, pedagogical access, improved science communication, increased diversity and inclusion, and equity of resources to provide maximal impact to the community. 
    more » « less